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Summary A consistent framework is outlined to describe wave propagation in solids with internal structure. The dual internal vari-
ables concept generalizes the single internal variable theory. The evolution equations for internal variables yield from the dissipation
inequality. Specific results are presented for microdeformations and microtemperatures.

INTRODUCTION

Dispersion plays a prominent role in the nonlinear water waves theory. Similarly, the dispersion accompanies wave
propagation in heterogeneous solids. The modeling of such a dispersion goes back to Maxwell, Rayleigh, and Boussinesq.
Two research lines in the modeling of dispersion effects can be clearly separated: (i) "bottom-up" approach and (ii) "top-
down" framework. In the bottom-up approach, one starts with the description at a micro-scale (usually atomic scale) to
derive the macroscopic equations of motion from the "first principles". Alternatively, the top-down framework is based
on the continuum description at the macro-scale introducing additional variables for the accounting for the micro-scale
influence. Any combination of the two descriptions gives a multi-scale method. As shown recently [1], the bottom-
up approach and the top-down framework can be "matched" on the level of the micromorphic continuum description.
However, thermal effects are not a part of the micromorphic theory of microstructured solids. The main difficulty in the
description of microstructure follows from the fact that the balance laws for microfields are considered as granted [2, 3] and
may be thermodynamically inconsistent. The adopted phenomenological approach is based on the material formulation
of continuum mechanics [4] and provides the full thermodynamic consistency due to the dual internal variables concept
[5], which describes the influence of microstructure by internal fields. The material formulation takes internal variables
into account naturally, consecutively, and consistently. The dual internal variables approach provides several possibilities
for evolution equations for internal fields that describe effects of microdeformations or microtemperatures (and their
gradients). The corresponding evolution equations can be hyperbolic even for microtemperatures, which in its turn can
induce wave-like propagation for macrotemperature due to the coupling of equations.

THEORETICAL BACKGROUND

In the framework of the phenomenological continuum theory, it is assumed that the influence of a microstructure on
the overall macroscopic motion of a body can be taken into account by the introduction of internal variables, which we
associate with the integral distributed effect of the microstructure. In the considered for simplicity one-dimensional case
(for 3D case see [6]), the free energy W depends (in addition to the deformation gradient ux and temperature θ) on two
internal variables, φ,ψ, and their space derivatives, W = W (ux, θ, φ, φx, ψ, ψx). The intrinsic dissipation inequality
reduces to [6]

Φ = (τ − ηx)φt + (ξ − ζx)ψt ≥ 0, where τ := −∂W
∂φ

, η := −∂W
∂φx

, ξ := −∂W
∂ψ

, ζ := −∂W
∂ψx

. (1)

The dissipation inequality (1) can be satisfied by several means. We consider three main cases for choosing the evolution
equations for internal variables: (i) fully dissipative case; (ii) non-dissipative case; and (iii) intermediate (composite) case.
Using a quadratic function as the free energy dependence
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we neglect for simplicity the contribution of the gradient of second internal variable. Here ρ0 is the density of the material,
cp is heat capacity, θ0 is the reference temperature, the thermoelastic coefficient m is related to the dilatation coefficient
α, and the Lamé coefficients λ and µ by m = α(3λ+ 2µ), A,A′, B, C and D are additional material parameters.

MATHEMATICAL MODELS

Example 1: Fully dissipative case
In the fully dissipative case, equations of motion and energy are reduced to [6]

ρ0utt = (λ+ 2µ)uxx +mθx +A′φxx, ρ0cpθt − (kθx)x = mθ0uxt +
1

R1
φ2
t . (3)
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Here R1 is an appropriate constant, k is the thermal conductivity [6]. The evolution equation for the primary internal
variable becomes the parabolic one

φt = R1Cφxx +A′uxx, (4)

and we can identify the internal variable with a microtemperature. Its influence on the macrotemperature manifests itself
in the source term in the right hand side of Eq. (3)2.

Example 2: Purely non-dissipative case
In the non-dissipative case, we can represent the equations of motion in the form, which includes only the primary internal
variable

ρ0utt = (λ+ 2µ)uxx +mθx +Aφx +A′φxx, Iφtt = Cφxx +A′uxx −Aux −Bφ, (5)

where I = 1/R2D is an internal inertia measure. The single dispersive wave equation that combines the equations of
motion

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

− I

B

(
utt − c2uxx

)
tt
+
A′2

ρ0B
uxxxx − A2

ρ0B
uxx, (6)

unifies and generalizes all known approaches [7] (here c2 = (λ+ 2µ) /ρ0).

Example 3: Intermediate case (microtemperature effects)
In the intermediate case, we have for the equation of motion and for the evolution equation of the primary internal variable
φ, respectively, [6]

ρ0utt = (λ+ 2µ)uxx +mθx +A′φxx, Iφtt +
R2

R2
φt = (Cφxx +A′uxx). (7)

Here R,R2 are appropriate constants. Clearly, Eq. (7)2 is a Cattaneo-Vernotte-type hyperbolic equation [8]. Note that the
energy conservation equation in this case is parabolic [6]

ρ0cpθt − (kθx)x = mθ0uxt +R2D
2φ2

t . (8)

As in the first case, the equation for the macrotemperature (8) is influenced by a source term which depends on the internal
variable. As it was shown [6], the primary internal variable can be identified in this case with the microtemperature. The
latter may induce a wave-like propagation of the macrotemperature even in the case of a parabolic equation for the
macrotemperature [6].

RESULTS

On the basis models described above, wave motion in microstructured solids has been studied, The focus of studies
has been on physical effects: interaction forces between macro- and micro-fields, nonlinear effects, and dispersion. It
is shown that the free energy function should be modified in some cases in order to catch properly interaction forces
and nonlinearities. The role of microtemperature accompanying wave motion is explained with full thermodynamic
consistency. The numerical simulations of wave fields demonstrate the applicability of such an approach [9]. It is proposed
to use such models also for solving inverse problems. The talk will summarize theoretical and numerical results obtained
over last years.
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